New Access to Homodinuclear Half-Sandwich Vinylidenemanganese Complexes

Koushik Venkatesan, [a] Thomas Fox, [a] Helmut W. Schmalle, [a] and Heinz Berke*[a]

Keywords: Cyclopentadienyl ligands / Half-sandwich complexes / Phosphanes / Molecular devices / Vinylidene ligands

The d^6 low-spin Mn^I half-sandwich dinuclear complexes of the type $[\{Mn(MeC_5H_4)(R_2PCH_2CH_2PR_2)=C=C(SnMe_3)\}_2\{X\}]$ $(X=\{\mu\text{-}1,4\text{-}C_6H_4\},\ R=Me,\ \textbf{2a};\ X=\{\mu\text{-}1,4\text{-}C_6H_4\},\ R=Et,\ \textbf{2b};\ X=\{\mu\text{-}1,3\text{-}C_6H_4\},\ R=Me,\ \textbf{3a};\ X=\{\mu\text{-}1,3\text{-}C_6H_4\},\ R=Et,\ \textbf{3b};\ X=\{\mu\text{-}4,4\text{-}C_6H_4\text{-}C_6H_4\},\ R=Me,\ \textbf{4a};\ X=\{\mu\text{-}4,4\text{-}C_6H_4\text{-}C_6H_4\},\ R=Et,\ \textbf{4b};\ X=\{\mu\text{-}1,4\text{-}C_4H_2S\},\ R=Me,\ \textbf{5a};\ X=\{\mu\text{-}1,4\text{-}C_4H_2S\},\ R=Et,\ \textbf{5b})$ were obtained by the treatment of $[Mn(C_5H_4Me)(\eta^6\text{-cycloheptatriene})]$ with 0.5 equiv. of the corresponding acetylene $Me_3Sn\text{-}C\equiv C\text{-}X\text{-}C\equiv C\text{-}SnMe_3\ (X=\{\mu\text{-}1,4\text{-}C_6H_4\},\ \{\mu\text{-}1,3\text{-}C_6H_4\},\ \{\mu\text{-}4,4\text{-}C_6H_4\text{-}C_6H_4\},\ \{\mu\text{-}1,4\text{-}C_4H_2S\})\}$ and $R_2PCH_2CH_2PR_2\ (R=Me,\ Et)$ at 50 °C for 12 h to yield the corresponding dinuclear complexes in very good yields.

These dinuclear tin-substituted vinylidene complexes were further treated with an excess of MeOH to give the corresponding dinuclear parent vinylidene complexes of the type $[\{Mn(MeC_5H_4)(R_2PCH_2CH_2PR_2)=C=C(H)\}_2[X]\}]$ (X = { μ -1,4-C $_6H_4$ }, R = Me, 6a; X = { μ -1,4-C $_6H_4$ }, R = Et, 6b; X = { μ -1,3-C $_6H_4$ }, R = Me, 7a; X = { μ -1,3-C $_6H_4$ }, R = Et, 7b; X = { μ -4,4-C $_6H_4$ -C $_6H_4$ -, R = Me, 8a; X = { μ -4,4-C $_6H_4$ -C $_6H_4$ -, R = Et, 8b). All dinuclear compounds were characterised by NMR and IR spectroscopy and elemental analysis. X-ray diffraction studies were performed on complexes 2b, 3a, 4a and 6a. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Introduction

Carbon-rich organometallics containing rigid, π -conjugated chains are of increasing interest due to their uses in the synthesis of unsaturated organic species, [1-4] organometallic polymers^[5] and π -conjugated di- or multimetallic systems. [3,6-24] In particular, the dinuclear transition metal acetylide complexes offer an interesting perspective for the build-up of organometallic systems as molecular-level single-electron devices and the bottom-up construction of miniaturised components capable of performing specific electronic functions.[8-20] Our ongoing interest in such building blocks is devoted to the synthesis and physical properties of molecular species which might function as wires. Specifically, they should consist of an all-carbon chain capped by two redox-active metal termini. [6-17] We sought to explore reactions of dinuclear vinylidene precursor complexes which would ultimately lead to polyyne ligand containing complexes. We recently reported the chemistry and reactivity of MnII and MnIII half-sandwich Me₂PCH₂CH₂PMe₂ (dmpe) alkynyl complexes and their conversion to (vinylidene)Mn^I species.^[21,23,24] The first conclusion of this study was that vinylidene complexes gained considerable stability through the presence of the bis(dimethylphosphanyl)ethane ligand (dmpe) in comparison with CO-substituted reported species $L^{1}L^{2}(C=CR_{2})]$ (L¹ = L² = CO, PR'₃ or L¹ = CO, L² = PR'₃).^[25] Although the dinuclear complexes with the CO ligands were reported earlier, [26] these complexes are not expected to possess low-energy work functions which is an important property required for the molecules to function as molecular wires. [23] In contrast, the complexes bearing electron-donating phosphane ligands can be expected to possess suitable electronic properties, i.e. a low energy work function. Similar types of dinuclear vinylidene complexes have been reported with terminal ends capped by various other transition metals such as Ru, [17b] Rh[27] or Fe. [7] We herein report access to new dinuclear half-sandwich complexes of the type [{Mn(MeC₅H₄)(R₂PCH₂CH₂PR₂) = C=C(H)}₂{X}] (R = Me, Et) (X = { μ -1,4-C₆H₄}, { μ -1,3-C₆H₄} and { μ -4,4-C₆H₄-C₆H₄}). It has been demonstrated by other groups that similar types of dinuclear vinylidene complexes can serve as valuable starting materials for obtaining access to dinuclear acetylide complexes.

Results and Discussion

A common method for obtaining vinylidene complexes is to make use of the high propensity of terminal acetylide derivatives to rearrange into vinylidene compounds. [28–36] Such principal possibilities have been corroborated by recent studies by our group. [18–23] For such a process to be initiated in half-sandwich Mn^I chemistry, we believed the complex [Mn(C₅H₄Me)(η^6 -cycloheptatriene)] (1)[37] would be an excellent starting material, since facile cycloheptatriene exchange could be expected to occur with electron donating ligands such as phosphanes or acetylenes. [38,39] Further reactivity with disubstituted tin acetylides was anticipated, thus leading to the desired dinuclear vinylidene species.

[[]a] Anorganisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland E-mail: hberke@aci.unizh.ch

The reaction of [Mn(C₅H₄Me)(η^6 -cycloheptatriene)] (1) with 0.5 equiv. of Me₃Sn-C=C-X-C=C-SnMe₃ (X = { μ -1,4-C₆H₄}, { μ -1,3-C₆H₄}, { μ -4,4-C₆H₄-C₆H₄}, { μ -1,4-C₆H₄}, { μ -1,4-C₆H₄}, { μ -1,4-C₆H₂S}) and R₂PCH₂CH₂PR₂ (R = Me, Et) at 50 °C for 12 h gave the corresponding vinylidene complexes of the type [{Mn(MeC₅H₄)(R₂PCH₂CH₂PR₂)=C=C(SnMe₃)}₂-{X}] (X = { μ -1,4-C₆H₄}, R = Me, **2a**; X = { μ -1,4-C₆H₄}, R = Et, **2b**; X = { μ -1,3-C₆H₄}, R = Me, **3a**; X = { μ -1,3-C₆H₄}, R = Et, **3b**; X = { μ -4,4-C₆H₄-C₆H₄}, R = Me, **4a**; X = { μ -4,4-C₆H₄-C₆H₄}, R = Et, **4b**; X = { μ -1,4-C₄H₂S}, R = Me, **5a**; X = { μ -1,4-C₄H₂S}, R = Et, **5b**) in quantitative yields (Scheme 1).

These reactions appear to require the initial formation of (alkyne)Mn species.^[25] However, NMR studies of the reactions carried out in the temperature range of -70 to 20 °C did not reveal any intermediates. The ¹³C NMR spectra of complexes 2–5 show the C_{α} and the C_{β} resonances between δ = 326–330 and 110–140 ppm, respectively. The ³¹P NMR resonances appear at $\delta \approx 95 \, \mathrm{ppm}$ for complexes 2a–5a and are thus comparable with those observed for the $[Mn(C_5H_4R^1)(Me_2PCH_2CH_2PMe_2)(=C=CR^2H)]$ related complexes. [24,38,39] However, for complexes 2b-5b a downfield shift to $\delta \approx 115$ ppm was observed in the ³¹P NMR spectra. The resonances corresponding to the trimethyltin groups were observed in the ¹¹⁹Sn NMR spectra as triplets at $\delta \approx -30$ ppm. The ³¹P, ¹¹⁹Sn and ¹³C NMR spectroscopic data for the complexes 2-5 are summarised in Table 1.

The structure of **2b** was additionally confirmed by an X-ray diffraction study (Figure 1). A pseudo-tetrahedral coor-

Table 1. $^{31}P\{^{1}H\}$, $^{119}Sn\{^{1}H\}$ and $^{13}C\{^{1}H\}$ NMR spectroscopic data for compounds 2–5

Com-	³¹ P NMR	¹¹⁹ Sn	¹³ C NMR	
pound	$ \begin{array}{c} (R_2PCH_2CH_2PR_2) \\ \delta \text{ (ppm)} \end{array} $	$ NMR (SnMe3) \delta (ppm) $	$Mn=C_a=C_\beta$	$Mn=C_a=C_\beta$
2a	94.9 (s)	-30.2 (t)	329.6 (t)	129.1
2b	115.0 (s)	-27.4(t)	326.3 (t)	129.9
3a	94.3 (s)	-29.8(t)	328.5 (t)	129.1
3b	115.0 (s)	-29.8(t)	328.5 (t)	129.1
4a	93.0 (s)	-17.1 (t)	330.5 (t)	129.1
4b	113.5 (s)	-29.2(t)	328.0 (t)	142.3
5a	93.7 (s)	-27.5(t)	328.5 (t)	110.1
5b	115.1 (s)	-26.3(t)	326.8 (t)	141.1

dination environment of the manganese centre was revealed. The bond lengths of 1.763(4) Å and 1.345(2) Å for Mn–C11 and C11–C12, respectively, confirm the double-bond character of these bonds. The observed C12–Sn bond length of 2.159(4) Å is similar to that found in the mononuclear vinylidene complexes already reported. [38,39] The bond angles for Mn–C11–C12 and C11–C12–C13 were found to be 175.7(3)° and 125.8(4)°, respectively.

X-ray diffraction analysis confirmed the spectroscopically derived structures of **3a** and **4a** which are closely related to that of **2b** (Figures 2 and 3). The solid-state structures indicated the Mn– C_{α} and C_{α} – C_{β} bond lengths to be 1.769(4) and 1.299(6) Å, and 1.744(4) and 1.358(5) Å, for **3a** and **4a**, respectively. These values confirm the double-bond nature in these vinylidene complexes.

$$\begin{array}{c} \text{Mn} \\ \text{2 Mn} \\ \text{4 Me}_3 \text{Sn} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{A} \\ \text{C}_6 \\ \text{H}_4 \\ \text{S}_6 \\ \text{H}_4 \\ \text{C}_6 \\ \text{H}_4 \\ \text{S}_6 \\ \text{H}_4 \\ \text{C}_6 \\ \text{H}_4 \\ \text{S}_6 \\ \text{H}_4 \\ \text{C}_6 \\ \text{H}_4 \\ \text{S}_6 \\ \text{E} \\ \text{E}$$

Scheme 1.

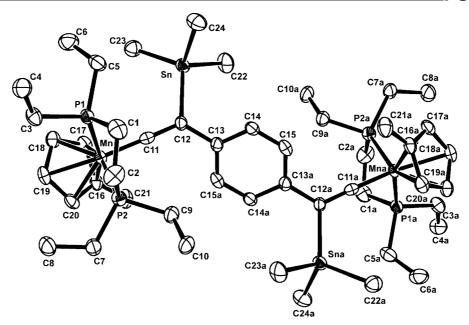


Figure 1. Molecular structure of **2b**; the symmetry operator a = -x, 2 - y, 1 - z represents a centre of inversion in the middle of the benzene ring; the ellipsoids are at the 30% probability level and the hydrogen atoms are omitted for clarity; selected bond lengths [Å] and bond angles [°]: Mn–C11 1.763(4), C11–C12 1.345(5), C12–Sn 2.159(4), C12–C13 1.486(6), C13–C14 1.402(5), C14–C15 1.390(6), Mn–Cg1 1.7885(6); C12–C11–Mn 175.7(3), C11–C12–Sn 118.3(3), C13–C12–Sn 115.1(2), C11–C12–C13 125.8(4), P1–Mn–P2 83.59(5)

Complexes **2–4** were further transformed into their corresponding parent vinylidene species of the type $[\{Mn(MeC_5H_4)(R_2PCH_2CH_2PR_2)=C=C(H)\}_2\{X\}]$ (X = $\{\mu$ -1,4-C₆H₄ $\}$, R = Me, **6a**; X = $\{\mu$ -1,4-C₆H₄ $\}$, R = Et, **6b**; X = $\{\mu$ -1,3-C₆H₄ $\}$, R = Me, **7a**; X = $\{\mu$ -1,3-C₆H₄ $\}$, R = Et,

7b; $X = \{\mu\text{-}4,4\text{-}C_6H_4\text{-}C_6H_4\}$, R = Me, **8a**; $X = \{\mu\text{-}4,4\text{-}C_6H_4\text{-}C_6H_4\}$, R = Et, **8b**) by treatment with an excess of MeOH for 2 h (Scheme 2). However, complexes **5a** and **5b** decomposed upon treatment either with MeOH or tbaf (5% H_2O). The 1H NMR spectra of these complexes revealed charac-

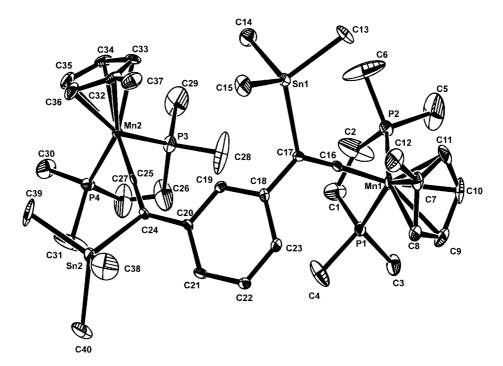


Figure 2. Molecular structure of **3a**; the ellipsoids are at the 30% probability level and the hydrogen atoms are omitted for clarity; selected bond lengths [Å] and bond angles [°]: Mn1–C16 1.769(4), C16–C17 1.299(6), C17–Sn1 2.161(4), C17–C18 1.481(6), C18–C19 1.392(5), C19–C20 1.418(5), Mn1–Cg1 1.8062(7), Mn2–Cg2 1.8045(7); C17–C16–Mn1 176.0(4), C16–C17–C18 124.2(4), C16–C17–Sn1 119.0(2), C17–C18–C19 122.5(4), C23–C18–C17 120.0(3)

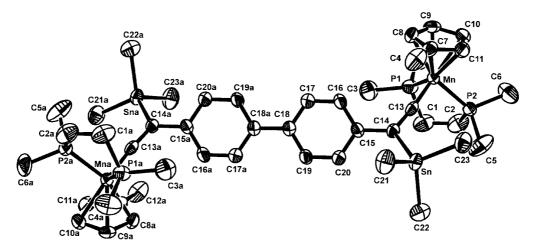
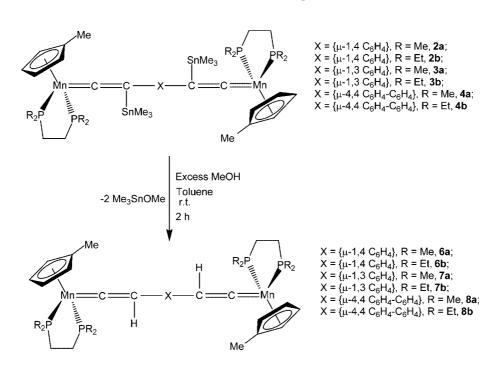



Figure 3. Molecular structure of **4a**; the symmetry operator a = 2 - x, 1 - y, 1 - z represents a centre of inversion in the middle of the biphenyl bond; the ellipsoids are at the 30% probability level and the hydrogen atoms are omitted for clarity; selected bond lengths [Å] and bond angles [°]: Mn–C13 1.744(4), C13–C14 1.358(5), C14–Sn 2.154(4), C14–C15 1.490(5), C15–C16 1.397(5), C16–C17 1.368(5), C17–C18 1.393(5), Mn1–Cg1 1.8055(5); C14–C13–Mn 174.1(13), C13–C14–C15 123.0(3), C13–C14–Sn 117.7(3), C14–C15–C16 122.7(3), C14–C15–C20 122.5(3)

Table 2. $^{31}P\{^{1}H\}$ and $^{13}C\{^{1}H\}$ NMR spectroscopic data for compounds 6–8

Compound	31 P NMR $(R_2PCH_2CH_2PR_2)$ δ (ppm)	¹³ C NMR δ (ppm) Mn= C_a = C_β Mn= C_a = C_β		
6a	96.1 (s)	325.4 (t)	133.9	
6b	114.5 (s)	327.4 (t)	133.9	
7a	94.9 (s)	343.4 (t)	141.3	
7b	114.2 (s)	341.9 (t)	140.4	
8a	94.5 (s)	342.2 (t)	139.9	
8b	115.1 (s)	345.5 (t)	140.2	

teristic triplet resonances at $\delta \approx 6.0$ ppm with ${}^4J_{\rm PH}$ values of 8.4 Hz. The ¹³C NMR spectra of complexes **2–5** show the C_{α} and the C_{β} resonances further downfield between δ = 325-350 and 130-140 ppm, respectively, in comparison with the tin derivatives. The ³¹P NMR resonances appear at $\delta \approx 97$ ppm for complexes **6a–8a** and are thus comparthose observed able with for the related $[Mn(C_5H_4R^1)(Me_2PCH_2CH_2PMe_2)(=C=CR^2H)]$ complexes.[24,38,39] However, the ³¹P NMR resonances for complexes **6b–8b** were observed further downfield at $\delta \approx$ 114 ppm. The ³¹P NMR and ¹³C NMR spectroscopic data for complexes 6-8 are summarised in Table 2.

Scheme 2.

904

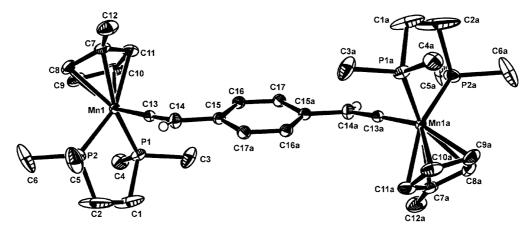


Figure 4. Molecular structure of **6a**; the symmetry operator a = 2 - x, 2 - y, 1 - z represents a centre of inversion in the middle of the benzene ring; the ellipsoids are at the 30% probability level and selected hydrogen atoms are omitted for clarity; selected bond lengths [Å] and bond angles [°]: Mn(1)–C(13) 1.746(2), C(13)–C(14) 1.340(3), C(14)–C(15) 1.466(3), C(1)–C(2) 1.354(5), C(15)–C(16) 1.403(3), Mn1–Cg1 1.7769(3); C(14)–C(13)–Mn(1) 175.09(19), C(13)–C(14)–C(15) 127.8(2), C(14)–C(15)–C(16) 123.1(2), C(5)–P(2)–C(6) 99.17(16), C(3)–P(1)–Mn(1) 120.44(11)

The structure of **6a** was also confirmed by an X-ray diffraction study (Figure 4). A pseudo-tetrahedral coordination environment for each manganese centre was found. The bond lengths of 1.746(4) Å and 1.340(3) Å for Mn1–C13 and C13–C14, respectively, are similar to those found for the previous complexes **2b**, **3a** and **4a** and confirm the double-bond character of these bonds. The bond angles for Mn–C13–C14 and C13–C14–C15 were found to be 175.09(19)° and 127.8(2)°. The latter bond angle suggests that the bending is less pronounced in comparison with the tin derivative.

Conclusions

New dinuclear vinylidenetin complexes and the parent vinylidene complexes capped by Mn^I half-sandwich units have been synthesised. A series of these complexes has been structurally characterised. These complexes offer further possibilities for gaining access to the corresponding dinuclear acetylide complexes.

Experimental Section

X-ray Diffraction Studies on 2b, 3a, 4a and 6a: Single-crystal Xray diffraction data were collected at measurement temperatures of 183(2) K for 2b and 4a, and 153(2) K for 3a and 6a using an imaging plate detector system (Stoe IPDS) with graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å). A total of 200, 167, 154 and 200 images were exposed at constant times of 3.0, 5.0, 2.6 and 2.5 min per image for the structures of 2b, 3a, 4a and 6a. [43] The crystal-to-image distances were set to 50 mm for 3a, 4a and 6a and to 60 mm for **2b** (θ_{max} range: 27.90–30.46°). φ -oscillation (**2b** and 3a) and rotation modes (4a and 6a) were chosen for the increments of 1.5, 1.2, 1.3 and 1.3° per exposure in each case. Total exposure times were 21, 24, 14 and 22.4 h. The intensities were integrated using a dynamic peak profile analysis and an estimated mosaic spread (EMS) check was performed to prevent overlapping intensities. For the cell parameter refinements, 8000 reflections with intensities $I > 6\sigma(I)$ were selected out of the whole limiting spheres

for the four structures. A total of 18043, 53927, 29813 and 13632 reflections were collected of which 5603, 13101, 7610 and 4830 were unique after performing absorption corrections and data reductions ($R_{\text{int}} = 8.79$, 11.04, 8.02 and 3.92%). For the numerical absorption corrections of 2b, 3a, 4a and 6a, the numbers of indexed crystal faces used were 9, 10, 6 and 10.[44] All measurement procedures were performed using the stoe IPDS software. [43] The measurement temperatures were controlled by an Oxford cryogenic system. It should be noted that the structures of 2b, 4a and 6a have crystallographically imposed inversion symmetry (see Figure 1, Figure 3 and Figure 4). The structures were solved with the unique data sets using the Patterson method of the program SHELXS-97.^[45] The structures were refined with the program SHELXL-97.[46] The programs PLATON and PLUTON[47] were used to check the results of the X-ray analyses and also for the completion of the structures by checking the different electron density calculations. Relevant crystallographic data are collected in Table 3.

Preparations

General: Reagent grade benzene, toluene, hexane, pentane, diethyl ether and tetrahydrofuran were dried and distilled from sodium benzophenone ketyl prior to use. Dichloromethane was distilled first from P2O5 and then from CaH2 prior to use. Literature procedures were used to prepare the following compounds: 1,2-bis(dimethylphosphanyl)ethane (dmpe),[48] 1,2-bis(diethylphosphanyl) (depe),^[48] $[Mn(\eta^5-MeC_5H_4)(\eta^6-cycloheptatriene)],^{[37]}$ $Me_3Sn-C \equiv C-X-C \equiv C-SnMe_3$ (X = { μ -1,4-C₆H₄}, { μ -1,3-C₆H₄}, $\{\mu-4,4-C_6H_4-C_6H_4\}$, [40-42] $\{\mu-1,4-C_4H_2S\}$). nBuLi (1.6 M in hexane), MeLi·LiBr (1.5 m in diethyl ether) and Me₃SnCl were used as received. All manipulations were carried out under nitrogen using Schlenk techniques or in a drybox. IR spectra were obtained with a Bio-Rad FTS-45 instrument. NMR spectra were measured with a Varian Gemini-2000 spectrometer at 300 MHz for ¹H and 121.5 MHz for ³¹P{¹H} and with a Bruker DRX-500 spectrometer the frequencies were 125.8 MHz for ¹³C{¹H} and 186.5 MHz for ¹¹⁹Sn. Chemical shifts for ¹H and ¹³C NMR spectra are given in ppm with respect to the solvent signals. ³¹P{¹H} NMR spectra were referenced to 98% external H₃PO₄ and the ¹¹⁹Sn{¹H} NMR spectra are relative to SnBu₄.

[{Mn(MeC₅H₄)(Me₂PCH₂CH₂PMe₂)=C=C(SnMe₃)}₂(μ -1,4-C₆H₄)] (2a): To a toluene solution (10 mL) of [Mn(MeC₅H₄)(η ⁶-cycloheptatriene)] (50 mg, 0.22 mmol) was added a toluene solution

Table 3. Crystallographic details of 2b, 3a, 4a and 6a

	2b	3a	4a	6a
Empirical formula	$C_{48}H_{84}Mn_2P_4Sn_2$	$C_{40}H_{68}Mn_2P_4Sn_2$	C ₄₆ H ₇₂ Mn ₂ P ₄ Sn ₂	$C_{34}H_{52}Mn_2P_4$
Colour	Red plate	Red elongated block	Red-orange plate	Red block
Formula mass [g mol ⁻¹]	1132.29	1020.08	1096.18	694.52
Crystal size [mm]	$0.24 \times 0.20 \times 0.12$	$0.12 \times 0.07 \times 0.06$	$0.20 \times 0.12 \times 0.05$	$0.23 \times 0.22 \times 0.14$
T[K]	183(2)	153(2)	183(2)	153(2)
$\lambda(\text{Mo-}K_a)$ [Å]	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	monoclinic	monoclinic	triclinic
Space group	$P\bar{1}$	$P2_1/c$	$P2_1/n$	$P\bar{1}$
a [Å]	9.5069(16)	14.9180(8)	10.3548(8)	8.3499(7)
b [Å]	9.8993(16)	17.8972(11)	15.9512(9)	8.3784(7)
c [Å]	14.425(2)	18.1653(10)	15.9948(13)	14.4569(11)
a [°]	104.729(18)	90	90	79.513(10)
β [°]	96.130(19)	108.609(6)	106.259(9)	80.926(10)
γ [°]	97.78(2)	90	90	63.470(9)
$V[\mathring{A}^3]$	1286.6(4)	4596.4(5)	2536.2(3)	886.41(12)
Z	1	4	2	1
$\rho_{\rm calcd.} [\text{g} \cdot \text{cm}^{-3}]$	1.461	1.474	1.435	1.301
$\mu [\mathrm{mm}^{-1}]$	1.594	1.776	1.615	0.914
F(000)	582	2072	1116	366
Transmission range	0.6157-0.8188	0.8326-0.9386	0.7581-0.9257	0.8837-0.9383
2θ range [°]	$4.90 < 2\theta < 55.80$	$5.14 < 2\theta < 60.70$	$5.46 < 2\theta < 60.92$	$5.48 < 2\theta < 60.50$
Measured reflections	18043	53927	29813	13632
Unique reflections	5603	13101	7610	4830
$I > 2\sigma(I)$ reflections	3790	5652	3291	3623
Parameters	261	448	252	186
Gof (for F^2)	0.973	0.718	0.759	1.052
$R_1[I > 2\sigma(I)], R_1(\text{all data})^{[a]}$	0.0345, 0.0598	0.0338, 0.1070	0.0356, 0.0901	0.0411, 0.0588
$wR_2[I > 2\sigma(I)]$, $wR_2(\text{all data})^{[a]}$	0.0734, 0.0794	0.0562, 0.0635	0.0556, 0.0594	0.1033, 0.1109
$\Delta \rho_{\text{max/min}} [e \cdot A^{-3}]$	0.719/-1.166	0.819/-1.192	0.735/-0.489	1.230/-1.174
hkl range	-12/12, -13/13, -18/18	-21/21, -25/25, -25/25	-14/14, -22/22, -22/22	-11/11, -11/11, -20/20

[a] $R_1 = \sum (F_0 - F_c)/\sum F_0$; $I > 2\sigma(I)$; $wR_2 = \{\sum w(F_0^2 - F_c^2)^2/\sum w(F_0^2)^2\}^{1/2}$.

(10 mL) of dmpe (33 mg, 0.22 mmol) and Me₃Sn-C \equiv C-C₆H₄-C≡C-SnMe₃ (50mg, 0.11 mmol). The solution was stirred at 50 °C for 3 h to give a dark red solution. The solvent was removed under vacuum to afford a dark red solid. Then the solid was extracted with diethyl ether and filtered through Celite. The ether fraction was concentrated to give an orange red precipitate. Crystallisation from ether at -35 °C gave single orange-red crystals. Yield: 104 mg, 93%. ¹H NMR ([D₈]THF, 300 MHz, 20 °C): δ = 6.75 (4 H, C₆H₅), 4.26 (4 H, C₅H₄Me), 4.00 (4 H, C₅H₄Me), 1.98 (6 H, C₅H₄Me), 1.72 (4 H, PCH₂), 1.61 (4 H, PCH₂), 1.22 (24 H, P[CH₃]₂), -0.07 ppm (18 H, SnMe₃). ¹³C{¹H} NMR ([D₈]THF, 125.8 MHz, 20 °C): $\delta = 329.6$ (t, ${}^{2}J_{P.C} = 35$ Hz, Mn- C_{α}), 136.7 (s, C_{t} -Ph), 129.1 (m, = C_6), 129.4 (s, 2 C, C_i -C₅H₄Me), 122.2 (s, C₆H₅), 120.5 (s, C₆H₅), 120.2 (s, C_6H_5), 83.9 (s, 4 C, C_5H_4Me), 81.3 (s, 4 C, C_5H_4Me), 32.1 (4 C, PCH₂), 24.5 (PCH₂), 21.9 (P[CH₃]₃), 14.8 (P[CH₃]₃), -6.1 (SnMe₃) ppm. ³¹P{¹H} NMR ([D₈]THF, 121.5 MHz, 20 °C): δ = 94.9 (s, 4 P) ppm. ¹¹⁹Sn NMR ([D₈]THF, 186.5 MHz, 20 °C): $\delta = -30.2$ (t, J = 76 Hz) ppm. IR (CH₂Cl₂, 20 °C): $\tilde{v} = 1544$ [v(C=C)], 1552 [v(C=C)] cm $^{\!-1}$. $C_{40}H_{68}Mn_2P_4Sn_2$ (1020.15): calcd. C 47.09, H 6.71; found C 47.08, H 6.74.

[{Mn(MeC₅H₄)(Et₂PCH₂CH₂PEt₂)=C=C(SnMe₃)}₂(μ-1,4-C₆H₄)] (**2b**): The same procedure as for **2a** was applied using [Mn(MeC₅H₄)(η⁶-cycloheptatriene)] (50 mg, 0.22 mmol), depe (45 mg, 0.22 mmol) and 1,4-C₆H₄(C≡C–SnMe₃)₂ (50 mg, 0.11 mmol). Yield: 115 mg, 94%. ¹H NMR (C₆D₆, 300 MHz, 20 °C): δ = 7.09 (4 H, C₆H₅), 4.53 (4 H, C₅H₄Me), 3.97 (4 H, C₅H₄Me), 2.22 (6 H, C₅H₄Me), 1.82 (4 H, PCH₂), 1.23 (4 H, PCH₂), 1.58 (4 H, PCH₂CH₃), 1.46 (4 H, PCH₂CH₃), 0.98 (6 H, PCH₂CH₃), 0.67 (6 H, PCH₂CH₃), 0.35 (18 H, SnMe₃) ppm. ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 20 °C): δ = 326.3 (t, ²J_{P.C} =

30.5 Hz, Mn- C_a), 136.7 (s, C_i -Ph), 129.9 (m, = C_β), 119.4 (s, 2 C, C_i - C_5 H₄Me), 96.3 (s, C_6 H₅), 120.5 (s, C_6 H₅), 81.9 (s, 4 C, C_5 H₄Me), 79.3 (s, 4 C, C_5 H₄Me), 30.8 (PCH₂), 22.2 (PCH₂), 21.8 (PCH₂CH₃), 19.7 (PCH₂CH₃), 14.5 (s, C_5 H₄CH₃), -7.1 (SnMe₃) ppm. ³¹P{¹H} NMR (C_6 D₆, 121.5 MHz, 20 °C): δ = 115.0 (s, 4 P) ppm. ¹¹⁹Sn NMR (C_6 D₆, 186.5 MHz, 20 °C): δ = -27.4 (t, J = 76.0 Hz) ppm. IR (CH₂Cl₂, 20 °C): \tilde{v} = 1545 [v(C=C)], 1553 [v(C=C)] cm⁻¹. C_{48} H₈₄Mn₂P₄Sn₂ (1132.37): calcd. C 50.91, H 7.47; found C 50.61, H 7.66.

 $[\{Mn(MeC_5H_4)(Me_2PCH_2CH_2PMe_2)=C=C(SnMe_3)\}_2(\mu-1,3-1)]$ C₆H₄)] (3a): The same procedure as for 2a was applied using $[Mn(MeC_5H_4)(\eta^6$ -cycloheptatriene)] (50 mg, 0.22 mmol), dmpe (33 mg, 0.22 mmol) and Me₃Sn–C \equiv C–C₆H₄–C \equiv C–SnMe₃ (50 mg, 0.11 mmol). Yield: 100 mg, 92%. ¹H NMR ([D₈]THF, 300 MHz, 20 °C): $\delta = 6.76$ (1 H, C₆H₅), 6.62 (2 H, C₆H₅), 6.41 (1 H, C₆H₅), 4.27 (4 H, C_5H_4Me), 4.01 (4 H, C_5H_4Me), 1.99 (6 H, C_5H_4Me), 1.73 (4 H, PCH₂), 1.63 (4 H, PCH₂), 1.23 (24 H, P[CH₃]₃), 0.1 (18 H, SnMe₃) ppm. 13 C{ 1 H} NMR ([D₈]THF, 125.8 MHz, 20 °C): δ = 328.5 (t, ${}^{2}J_{P,C}$ = 30 Hz, Mn- C_{α}), 143.1 (s, C_{i} -Ph), 129.1 (m, = C_{β}), 125.4 (s, 2 C, C_i - C_5 H₄Me), 122.2 (s, C_6 H₅), 118.5 (s, C_6 H₅), 98.2 (s, C₆H₅), 83.9 (s, 4 C, C₅H₄Me), 81.3 (s, 4 C, C₅H₄Me), 32.1 (4 C, PCH₂), 24.5 (PCH₂), 21.9 (P[CH₃]₃), 14.8 (P[CH₃]₃), -8.1 (SnMe₃) ppm. ³¹P{¹H} NMR ([D₈]THF, 121.5 MHz, 20 °C): δ = 94.3 (s, 4 P) ppm. ¹¹⁹Sn NMR ([D₈]THF, 186.5 MHz, 20 °C): $\delta = -29.8$ (t, J = 77.0 Hz). IR (CH₂Cl₂, 20 °C): \tilde{v} = 1545 [v(C=C)], 1556 [v(C=C)] cm⁻¹. C₄₀H₆₈Mn₂P₄Sn₂ (1020.15): calcd. C 47.09, H 6.71; found C 47.08, H 6.74.

[$\{Mn(MeC_5H_4)(Et_2PCH_2CH_2PEt_2)=C=C(SnMe_3)\}_2(\mu-1,3-C_6H_4)$] (3b): The same procedure as for 2a was applied using

 $[Mn(MeC_5H_4)(\eta^6$ -cycloheptatriene)] (50 mg, 0.22 mmol), depe (45 mg, 0.22 mmol) and $1.3-C_6H_4(C \equiv C-SnMe_3)_2$ (50 mg, 0.11 mmol). Yield: 120 mg, 98%. 1 H NMR ([D₈]THF, 300 MHz, 20 °C): $\delta = 6.76$ (1 H, C₆H₅), 6.62 (2 H, C₆H₅), 6.41 (1 H, C₆H₅), 4.27 (4 H, C₅H₄Me), 4.01 (4 H, C₅H₄Me), 1.99 (6 H, C₅H₄Me), 1.82 (4 H, PCH₂), 1.23 (4 H, PCH₂), 1.58 (4 H, PCH₂CH₃), 1.46 (4 H, PCH₂CH₃), 0.98 (6 H, PCH₂CH₃), 0.67 (6 H, PCH₂CH₃), 0.1 (18 H, SnMe₃) ppm. ${}^{13}C\{{}^{1}H\}$ NMR ([D₈]THF, 125.8 MHz, 20 °C): $\delta = 328.5$ (t, ${}^2J_{PC} = 30$ Hz, Mn- C_{α}), 143.1 (s, C_i -Ph), 129.1 $(m, =C_B)$, 125.4 (s, 2 C, C_t -C₅H₄Me), 122.2 (s, C₆H₅), 118.5 (s, C_6H_5), 98.2 (s, C_6H_5), 83.9 (s, 4 C, C_5H_4Me), 81.3 (s, 4 C, C_5H_4Me), 30.8 (PCH₂), 22.2 (PCH₂), 21.8 (PCH₂CH₃), 19.7 (PCH_2CH_3) , 14.5 (s, $C_5H_4CH_3$), -7.1 (SnMe₃) ppm. ³¹P{¹H} NMR ([D₈]THF, 121.5 MHz, 20 °C): δ = 115.0 (s, 4 P) ppm. ¹¹⁹Sn NMR ([D₈]THF, 186.5 MHz, 20 °C): $\delta = -29.8$ (t, J = 75.0 Hz) ppm. IR $(CH_2Cl_2, 20 \, ^{\circ}C)$: $\tilde{v} = 1549 \, [v(C=C)], 1558 \, [v(C=C)] \, cm^{-1}$. C₄₈H₈₄Mn₂P₄Sn₂ (1132.37): calcd. C 50.91, H 7.47; found C 50.56,

 $[\{Mn(MeC_5H_4)(Me_2PCH_2CH_2PMe_2)=C=C(SnMe_3)\}_2\{\mu-4,4-4\}$ $(C_6H_4)_2$ (4a): The same procedure as for 2a was applied using $[Mn(MeC_5H_4)(\eta^6$ -cycloheptatriene)] (50 mg, 0.22 mmol), dmpe (33 mg, 0.22 mmol) and $Me_3Sn-C \equiv C-C_6H_4-C_6H_4-C \equiv C-SnMe_3$ (58 mg, 0.11 mmol). Yield: 105 mg, 91%. ^{1}H NMR ([D₈]THF, 300 MHz, 20 °C): $\delta = 7.28$ (m, 4 H, C₆H₅), 7.02 (m, 4 H, C₆H₅), 4.28 (4 H, C₅H₄Me), 4.03 (4 H, C₅H₄Me), 1.97 (6 H, C₅H₄Me), 1.72 (4 H, PCH₂), 1.61 (4 H, PCH₂), 1.23 (24 H, P(CH₃]₃), 0.09 (18 H, SnMe₃) ppm. ¹³C{¹H} NMR ([D₈]THF, 125.8 MHz, 20 °C): $\delta = 330.5$ (t, ${}^{2}J_{PC} = 35$ Hz, Mn- C_{α}), 143.3 (s, C_{i} -Ph), 135.8 (s, C_6H_5), 133.2 (s, 2 C, C_7 - C_5H_4Me), 129.1 (m, = C_8), 125.4 (s, C_6H_5), 118.1 (s, C_6H_5), 83.4 (s, 4 C, C_5H_4Me), 81.3 (s, 4 C, C_5H_4Me), 32.05 (4 C, PCH₂), 24.5 (PCH₂), 21.9 (P[CH₃]₃), 14.8 (P[CH₃]₃), -6.1 (SnMe₃) ppm. ³¹P{¹H} NMR ([D₈]THF, 121.5 MHz, 20 °C): $\delta = 93.0$ (s, 4 P) ppm. ¹¹⁹Sn NMR ([D₈]THF, 186.5 MHz, 20 °C): $\delta = -17.1$ (t, J = 77.0 Hz) ppm. IR (CH₂Cl₂, 20 °C): $\tilde{v} = 1545$ [v(C=C)], 1553 [v(C=C)] cm $^{\!-1}$. $C_{46}H_{72}Mn_2P_4Sn_2$ (1096.25): calcd. C 50.39, H 6.61; found C 50.47, H 6.39.

 $[\{Mn(MeC_5H_4)(Et_2PCH_2CH_2PEt_2)=C=C(SnMe_3)\}_2\{\mu-4,4-4\}$ $(C_6H_4)_2$ (4b): The same procedure as for 2a was applied using [Mn(MeC₅H₄)(η⁶-cycloheptatriene)] (50 mg, 0.22 mmol), dmpe (45 mg, 0.22 mmol) and $4,4-(C_6H_4)_2(C \equiv C-SnMe_3)_2$ (58 mg, 0.11 mmol). Yield: 125 mg, 96%. ¹H NMR ([D₈]THF, 300 MHz, 20 °C): $\delta = 7.31$ (m, 4 H, C₆H₅), 6.98 (m, 4 H, C₆H₅), 4.48 (4 H, C_5H_4Me), 4.02 (4 H, C_5H_4Me), 2.08 (6 H, C_5H_4Me), 1.89 (4 H, PCH₂), 1.73 (4 H, PCH₂), 1.43 (4 H, PCH₂CH₃), 1.14 (4 H, PCH₂CH₃), 1.02 (6 H, PCH₂CH₃), 0.92 (6 H, PCH₂CH₃), 0.11 (18 H, SnMe₃) ppm. ${}^{13}C\{{}^{1}H\}$ NMR ([D₈]THF, 125.8 MHz, 20 °C): δ = 328.0 (t, ${}^{2}J_{P,C}$ = 35 Hz, Mn- C_{α}), 142.3 (m, = C_{β}), 138.4 (s, C_{i} -Ph), 135.8 (s, C_6H_5), 133.2 (s, 2 C, $C_7C_5H_4Me$), 125.4 (s, C_6H_5), 118.1 (s, C_6H_5) , 83.4 $(s, 4 C, C_5H_4Me)$, 81.3 $(s, 4 C, C_5H_4Me)$, 30.8 (PCH₂), 22.2 (PCH₂), 21.8 (PCH₂CH₃), 19.7 (PCH₂CH₃), 14.5 (s, $C_5H_4CH_3$, -8.3 (SnMe₃) ppm. ³¹P{¹H} NMR ([D₈]THF, 121.5 MHz, 20 °C): $\delta = 113.5$ (s, 4 P) ppm. ¹¹⁹Sn NMR ([D₈]THF, 186.5 MHz, 20 °C): $\delta = -29.2$ (t, J = 75.1 Hz) ppm. IR (CH₂Cl₂, 20 °C): $\tilde{v} = 1544 [v(C=C)], 1559 [v(C=C)] \text{ cm}^{-1}. C_{54}H_{88}Mn_2P_4Sn_2$ (1208.46): calcd. C 53.66, H 7.33; found C 53.77, H 7.36.

[{Mn(MeC₅H₄)(Me₂PCH₂CH₂PMe₂)=C=C(SnMe₃)}₂(μ -1,4-C₄H₂S)] (5a): The same procedure as for 2a was applied using [Mn(MeC₅H₄)(η ⁶-cycloheptatriene)] (50 mg, 0.22 mmol), dmpe (33 mg, 0.22 mmol) and Me₃Sn-C=C-C₄H₂S-C=C-SnMe₃ (37 mg, 0.11 mmol). Yield: 105 mg, 94%. ¹H NMR (C₆D₆, 300 MHz, 20 °C): δ = 6.36 (4 H, C₆H₅), 4.36 (4 H, C₅H₄Me), 3.95 (4 H, C₅H₄Me), 2.18 (6 H, C₅H₄Me), 1.59 (4 H, PCH₂), 1.32 (12

H, P[CH₃]₂), 1.24 (4 H, PCH₂), 0.85 (12 H, P[CH₃]₂), 0.41 (18 H, SnMe₃) ppm. 13 C{ 1 H} NMR (C₆D₆, 125.8 MHz, 20 °C): δ = 328.5 (t, $^{2}J_{P,C}$ = 32.3 Hz, Mn- C_{α}), 139.7 (s, C_{r} -C₄H₂S), 120.2 (s, C₄H₂S), 110.1 (m, = C_{β}), 97.3 (s, 2 C, C_{r} -C₅H₄Me), 83.9 (s, 4 C, C₅H₄Me), 81.5 (s, 4 C, C₅H₄Me), 31.8 (2 C, PCH₂), 23.7 (2 C, PCH₂), 23.7 (P[CH₃]₃), 21.7 (P[CH₃]₃), 15.3 (2 C, C₅H₄Me), -6.2 (SnMe₃) ppm. 31 P{ 1 H} NMR (C₆D₆, 121.5 MHz, 20 °C): δ = 93.7 (s, 4 P) ppm. 119 Sn NMR (C₆D₆, 186.5 MHz, 20 °C): δ = -27.5 (t, J = 72.0 Hz) ppm. IR (CH₂Cl₂, 20 °C): $\tilde{\nu}$ = 1545 [v(C=C)], 1553 [v(C=C)] cm⁻¹. C₃₈H₆₆Mn₂P₄Sn₂S (1026.18): calcd. C 44.47, H 6.48; found C 44.59, H 6.74.

 $[\{Mn(MeC_5H_4)(Et_2PCH_2CH_2PEt_2)=C=C(SnMe_3)\}_2(\mu-1,4-C_4H_2S)]$ (5b): The same procedure as for 2a was applied using $[Mn(MeC_5H_4)(\eta^6\text{-cycloheptatriene})]$ (50 mg, 0.22 mmol), depe (45 mg, 0.22 mmol) and $1,4-C_4H_2S(C \equiv C-SnMe_3)_2$ (37 mg, 0.11 mmol). Yield: 120 mg, 94%. ¹H NMR (C₆D₆, 300 MHz, 20 °C): $\delta = 6.35$ (4 H, C₆H₅), 4.61 (4 H, C₅H₄Me), 4.01 (4 H, C_5H_4Me), 2.31 (6 H, C_5H_4Me), 1.59 (4 H, PCH₂), 1.32 (8 H, P[CH₂CH₃]₂), 1.32 (8 H, P[CH₂CH₃]₂), 1.02 (12 H, P[CH₃]₂), 0.73 (4 H, PCH₂), 0.48 (18 H, SnMe₃) ppm. $^{13}C\{^{1}H\}$ NMR ($C_{6}D_{6}$, 125.8 MHz, 20 °C): $\delta = 326.8$ (t, ${}^{2}J_{P,C} = 32.3$ Hz, Mn- C_{α}), 141.1 (m, = C_B), 120.9 (s, C_i - C_4 H₂S), 109.4 (s, C_4 H₂S), 97.4 (s, 2 C, C_i -C₅H₄Me), 82.9 (s, 4 C, C₅H₄Me), 79.8 (s, 4 C, C₅H₄Me), 30.8 (PCH₂), 22.2 (PCH₂), 21.8 (PCH₂CH₃), 19.7 (PCH₂CH₃), 14.5 (s, $C_5H_4CH_3$), -6.2 ppm (SnMe₃). ${}^{31}P\{{}^{1}H\}$ NMR (C_6D_6 , 121.5 MHz, 20 °C): δ = 115.1 ppm (s, 4 P). ¹¹⁹Sn NMR (C₆D₆, 186.5 MHz, 20 °C): $\delta = -26.3$ (t, J = 72.0 Hz). IR (CH₂Cl₂, 20 °C): $\tilde{v} = 1548$ [v(C=C)], 1554 [v(C=C)] cm⁻¹. $C_{38}H_{66}Mn_2P_4Sn_2S$ (1138.40): calcd. C 44.47, H 6.48; found C 44.59, H 6.74.

 $[\{Mn(MeC_5H_4)(Me_2PCH_2CH_2PMe_2) = C = C(H)\}_2(\mu-1,4-C_6H_4)] \ \ (6a):$ To a toluene solution (10 mL) of $[\{Mn(MeC_5H_4)(dmpe)=$ $C=C(SnMe_3)$ ₂(μ -1,4-C₆H₄)] (120 mg, 0.17 mmol) was added an excess of methanol. The solution was stirred at room temperature for 2 h to give a dark red solution. The solvent was removed under vacuum to afford a dark red solid which was washed with pentane. The solid was extracted with toluene and filtered through Celite. The toluene fraction was concentrated to give an orange-red precipitate. Crystallisation from a mixture of tetrahydrofuran/ether at -35 °C gave single orange-red crystals. Yield: 105 mg, 90%. ¹H NMR ([D₈]toluene, 300 MHz, 20 °C): $\delta = 7.15$ (4 H, C₆H₅), 5.91 $(2 \text{ H}, {}^{4}J_{PH} = 8.4 \text{ Hz}, = \text{C[H]}), 4.30 (4 \text{ H}, \text{C}_{5}\text{H}_{4}\text{Me}), 3.86 (4 \text{ H},$ C₅H₄Me), 1.93 (6 H, C₅H₄Me), 1.49 (4 H, PCH₂), 1.11 (12 H, P(CH₃]₂), 1.02 (4 H, PCH₂), 0.74 (12 H, P[CH₃]₂) ppm. ¹³C{¹H} NMR ([D₈]toluene, 125.8 MHz, 20 °C): $\delta = 325.4$ (t, ${}^{2}J_{PC} =$ 37.5 Hz, Mn- C_{α}), 133.9 (m, = C_{β}), 132.3 (s, C_{r} -Ph), 129.4 (s, 2 C, C_t - C_5 H₄Me), 123.1 (s, C_6 H₅), 122.3 (s, C_6 H₅), 121.9 (s, C_6 H₅), 84.1 (s, 4 C, C₅H₄Me), 80.4 (s, 4 C, C₅H₄Me), 31.2 (2 C, PCH₂), 23.5 (2 C, PCH₂), 21.1 (P[CH₃]₃), 14.8 (P[CH₃]₃) ppm. ³¹P{¹H} NMR ([D₈]toluene, 121.5 MHz, 20 °C): $\delta = 96.1$ (s, 4 P) ppm. IR $(CH_2Cl_2, 20 \, ^{\circ}C)$: $\tilde{v} = 1545 \, [v(C=C)], 1553 \, [v(C=C)] \, cm^{-1}$. C₃₄H₅₂Mn₂P₄ (694.54): calcd. C 58.79, H 7.54; found C 58.95, H

[{Mn(MeC₅H₄)(Et₂PCH₂CH₂PEt₂)=C=C(H)}₂(μ-1,4-C₆H₄)] (6b): The same procedure as for 6a was applied using [{Mn(MeC₅H₄)(depe)=C=C(SnMe₃)}₂(μ-1,4-C₆H₄)] (120 mg, 0.10 mmol). Yield: 80 mg, 98%. ¹H NMR (C₆D₆, 300 MHz, 20 °C): δ = 7.28 (4 H, C₆H₅), 5.91 (2 H, ⁴J_{P,H} = 12.9 Hz, =C[H]), 4.51 (4 H, C₅H₄Me), 4.05 (4 H, C₅H₄Me), 2.17 (6 H, C₅H₄Me), 1.89 (4 H, PCH₂), 1.73 (4 H, PCH₂), 1.43 (4 H, PCH₂CH₃), 1.14 (4 H, PCH₂CH₃), 1.02 (6 H, PCH₂CH₃), 0.92 (6 H, PCH₂CH₃) ppm. ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 20 °C): δ = 327.4 (t, ²J_{P,C} = 37.5 Hz, Mn-C_a), 133.9 (m, =C_β), 132.3 (s, C_r-Ph), 129.4 (s, 2 C,

 C_7 - C_5 H₄Me), 123.1 (s, C_6 H₅), 122.3 (s, C_6 H₅), 121.9 (s, C_6 H₅), 84.1 (s, 4 C, C_5 H₄Me), 80.4 (s, 4 C, C_5 H₄Me), 30.8 (PCH₂), 22.2 (PCH₂), 21.8 (PCH₂CH₃), 19.7 (PCH₂CH₃), 14.5 (s, C_5 H₄CH₃) ppm. 31 P{ 11 H} NMR (C_6 D₆, 121.5 MHz, 20 °C): δ = 114.5 (s, 4 P) ppm. IR (CH₂Cl₂, 20 °C): \tilde{v} = 1548 [v(C=C)], 1555 [v(C=C)] cm⁻¹. C_{42} H₆₈Mn₂P₄ (806.76): calcd. C 62.52, H 8.49; found C 62.31, H 8.45.

 $[\{Mn(MeC_5H_4)(Me_2PCH_2CH_2PMe_2)=C=C(H)\}_2(\mu-1,3-C_6H_4)]$ (7a): The same procedure as for 6a was applied using $[\{Mn(MeC_5H_4)(dmpe)=C=C(SnMe_3)\}_2(\mu-1,3-C_6H_4)]$ 0.17 mmol). Yield: 105 mg, 90%. ¹H NMR ([D₈]toluene, 300 MHz, 20 °C): $\delta = 7.31$ (1 H, C₆H₅), 7.25 (1 H, C₆H₅), 7.13 (2 H, C₆H₅), 6.01 (2 H, ${}^{4}J_{P,H}$ = 8.4 Hz, =C[H]), 4.42 (4 H, C₅H₄Me), 3.99 (4 H, C₅H₄Me), 2.07 (6 H, C₅H₄Me), 1.59 (4 H, PCH₂), 1.24 (12 H, P[CH₃]₂), 1.18 (4 H, PCH₂), 0.80 (12 H, P[CH₃]₂) ppm. ¹³C{¹H} NMR ([D₈]toluene, 125.8 MHz, 20 °C): $\delta = 343.4$ (t, ${}^{2}J_{PC} =$ 37.5 Hz, Mn- C_{α}), 141.3 (m, = C_{β}), 132.3 (s, C_{z} -Ph), 122.4 (s, 2 C, C_t - C_5H_4Me), 123.1 (s, C_6H_5), 118.4 (s, C_6H_5), 116.7 (s, C_6H_5), 84.1 (s, 4 C, C₅H₄Me), 80.4 (s, 4 C, C₅H₄Me), 31.3 (2 C, PCH₂), 23.8 (2 C, PCH₂), 21.7 (P[CH₃]₃), 14.8 (P[CH₃]₃) ppm. ³¹P{¹H} NMR $(C_6D_6, 121.5 \text{ MHz}, 20 \,^{\circ}\text{C})$: $\delta = 94.9 \, (s, 4 \, P) \, ppm. \, IR \, (CH_2Cl_2, 12.1)$ 20 °C): $\tilde{v} = 1549 \text{ [v(C=C)]}, 1558 \text{ [v(C=C)] cm}^{-1}. C_{34}H_{52}Mn_2P_4$ (694.54): calcd. C 58.79, H 7.54; found C 58.95, H 7.43.

 $[\{Mn(MeC_5H_4)(Et_2PCH_2CH_2PEt_2)=C=C(H)\}_2(\mu-1,3-C_6H_4)]$ (7b): The same procedure as for 6a was applied using $[\{Mn(MeC_5H_4)(depe)=C=C(SnMe_3)\}_2(\mu-1,3-C_6H_4)]$ (190 mg,0.17 mmol). Yield: 120 mg, 90%. ¹H NMR ([D₈]toluene, 300 MHz, 20 °C): δ = 7.31 (1 H, C₆H₅), 7.25 (1 H, C₆H₅), 7.13 (2 H, C₆H₅), 6.08 (2 H, ${}^{4}J_{P,H}$ = 8.4 Hz, =C[H]), 4.51 (4 H, C₅H₄Me), 4.05 (4 H, C₅H₄Me), 2.17 (6 H, C₅H₄Me), 1.89 (4 H, PCH₂), 1.73 (4 H, PCH₂), 1.43 (4 H, PCH₂CH₃), 1.14 (4 H, PCH₂CH₃), 1.02 (6 H, PCH₂CH₃), 0.92 (6 H, PCH₂CH₃) ppm. ¹³C{¹H} NMR ([D₈]toluene, 125.8 MHz, 20 °C): δ = 341.9 (t, ${}^2J_{P,C}$ = 37 Hz, Mn- C_{α}), 140.4 $(m, =C_B)$, 132.3 (s, C_i -Ph), 122.4 (s, 2 C, C_i -C₅H₄Me), 123.1 (s, C_6H_5), 118.4 (s, C_6H_5), 116.7 (s, C_6H_5), 84.1 (s, 4 C, C_5H_4Me), 80.4 (s, 4 C, C₅H₄Me), 30.8 (PCH₂), 22.2 (PCH₂), 21.8 (PCH₂CH₃), 19.7 (PCH₂CH₃), 14.5 (s, C₅H₄CH₃) ppm. ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 20 °C): δ = 114.2 (s, 4 P) ppm. IR (CH₂Cl₂, 20 °C): \tilde{v} = 1545 [v(C=C)], 1553 [v(C=C)] cm⁻¹. C₄₂H₆₈Mn₂P₄ (806.76): C 58.79, H 7.54; found C 58.89, H 7.89.

 $[\{Mn(MeC_5H_4)(Me_2PCH_2CH_2PMe_2)=C=C(H)\}_2(\mu-4,4-(C_6H_4)_2)]$ (8a): The same procedure as for 6a was applied using $[\{Mn(MeC_5H_4)(dmpe)=C=C(SnMe_3)\}_2\{\mu-4,4-(C_6H_4)_2\}]$ (120 mg, 0.10 mmol). Yield: 70 mg, 92%. ¹H NMR ([D₈]toluene, 300 MHz, 20 °C): δ = 7.67 (m, 4 H, C₆H₅), 7.42 (m, 4 H, C₆H₅), 6.00 (2 H, ${}^{4}J_{P,H}$ = 7.9 Hz, =C[H]), 4.42 (4 H, C₅H₄Me), 3.95 (4 H, C₅H₄Me), 2.06 (6 H, C₅H₄Me), 1.56 (4 H, PCH₂), 1.20 (24 H, P[CH₃]₃), 1.05 (4 H, PCH₂), 0.79 (24 H, P[CH₃]₃) ppm. ¹³C{¹H} NMR ([D₈]toluene, 125.8 MHz, 20 °C): $\delta = 342.2$ (t, ${}^2J_{P,C} = 34.7$ Hz, Mn- C_{α}), 139.9 (m, = C_{β}), 135.4 (s, C_i -Ph), 133.2 (s, C_6H_5), 126.7 (s, 2 C, C_i - C_5H_4Me), 126.2 (s, C_6H_5), 120.4 (s, C_6H_5), 84.6 (s, 4 C, C_5H_4Me), 80.3 (s, 4 C, C₅H₄Me), 30.8 (4 C, PCH₂), 23.3 (PCH₂), $(P[CH_3]_3)$, 14.6 $(P[CH_3]_3)$ ppm. ${}^{31}P\{{}^{1}H\}$ NMR $([D_8]toluene$, 121.5 MHz, 20 °C): δ = 94.5 (s, 4 P) ppm. IR (CH₂Cl₂, 20 °C): \tilde{v} = 1547 [v(C=C)], 1553 [v(C=C)] cm⁻¹. $C_{40}H_{56}Mn_2P_4$ (770.64): calcd. C 62.34, H 7.32; found C 62.47, H 7.39.

[{Mn(MeC₅H₄)(Et₂PCH₂CH₂PEt₂)=C=C(H)}₂{ μ -4,4-(C₆H₄)₂}] (8b): The same procedure as for 6a was applied using [{Mn(MeC₅H₄)(depe)=C=C(SnMe₃)}₂{ μ -4,4-(C₆H₄)₂}] (130mg, 0.10 mmol). Yield: 82 mg, 95%. ¹H NMR ([D₈]toluene, 300 MHz, 20 °C): δ = 7.68 (m, 4 H, C₆H₅), 7.38 (m, 4 H, C₆H₅), 6.00 (2 H, ⁴J_{P,H} = 8.4 Hz, =C[H]), 4.52 (4 H, C₅H₄Me), 4.03 (4 H, C₅H₄Me),

2.16 (6 H, C_5H_4Me), 1.73 (4 H, PCH_2), 1.66 (4 H, PCH_2), 1.43 (4 H, PCH_2CH_3), 1.14 (4 H, PCH_2CH_3), 1.02 (6 H, PCH_2CH_3), 0.92 (6 H, PCH_2CH_3) ppm. $^{13}C\{^1H\}$ NMR ([D_8]toluene, 125.8 MHz, 20 °C): δ = 345.5 (t, $^2J_{P.C}$ = 34.7 Hz, Mn- C_a), 140.2 (m, = C_β), 136.3 (s, C_Γ Ph), 133.2 (s, C_6H_5), 127.8 (s, 2 C, C_Γ C $_5H_4Me$), 123.2 (s, C_6H_5), 120.2 (s, C_6H_5), 83.1 (s, 4 C, C_5H_4Me), 80.4 (s, 4 C, C_5H_4Me), 30.8 (PCH_2), 22.2 (PCH_2), 21.8 (PCH_2CH_3), 19.7 (PCH_2CH_3), 14.5 (s, $C_5H_4CH_3$) ppm. $^{31}P\{^1H\}$ NMR ([D_8]toluene, 121.5 MHz, 20 °C): δ = 115.1 (s, 4 P) ppm. IR (CH_2CI_2 , 20 °C): δ = 1546 [v(C=C)], 1559 [v(C=C)] cm $^{-1}$. $C_{48}H_{52}Mn_2P_4$ (862.69): calcd. C 66.82, H 6.07; found C 66.93, H 6.04.

X-ray Crystallography: Crystallographic data (excluding structure factors) for the structures given in this paper have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication Nos. CCDC-239735, -239736, -239737 and -239738. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk).

Acknowledgments

Funding from the Swiss National Science Foundation (SNSF) and from the University of Zürich is gratefully acknowledged.

- [1] T. Bartik, B. Bartik, M. Brady, R. Dembinski, J. A. Gladysz, *Angew. Chem. Int. Ed. Engl.* 1996, 35, 414.
- [2] U. H. F. Bunz, Angew. Chem. Int. Ed. Engl. 1994, 33, 1073.
- [3] U. H. F. Bunz, Y. Rubin, Y. Tobe, Chem. Soc. Rev. 1999, 28, 107.
- [4] F. Diederich, Y. Rubin, Angew. Chem. Int. Ed. Engl. 1992, 31, 1101.
- [5] I. Manners, Angew. Chem. Int. Ed. Engl. 1996, 35, 1603.
- [6] N. Le Narvor, L. Toupet, C. Lapinte, J. Am. Chem. Soc. 1995, 117, 7129.
- [7] N. Le Narvor, C. Lapinte, Organometallics 1995, 14, 634.
- [8] F. Paul, C. Lapinte, Coord. Chem. Rev. 1998, 180, 431.
- [9] J. M. Tour, Chem. Rev. 1996, 96, 537.
- [10] A. Harriman, R. Ziessel, Coord. Chem. Rev. 1998, 171, 331.
- [11] R. L. Carroll, C. B. Groman, Angew. Chem. Int. Ed. 2002, 41, 4378
- [12] E. Viola, C. LoSterzo, F. Trezzi, Organometallics 1996, 15, 4352.
- [13] W. G. Weng, T. Bartik, J. A. Gladysz, Angew. Chem. Int. Ed. Engl. 1994, 33, 2199.
- [14] I. R. Whittall, M. G. Humphrey, D. C. R. Hockless, *Organometallics* 1995, 14, 3970.
- [15] M. I. Bruce, M. Z. Ke, P. J. Low, Chem. Commun. 1996, 2405.
- [16] U. H. F. Bunz, V. Enkelmann, Organometallics 1994, 13, 3823.
- [17] a) O. Lavastre, M. Even, P. H. Dixneuf, A. Pacreau, J. P. Vairon, *Organometallics* 1996, 15, 1530; b) H. Werner, P. Bachmann, M. Martin, *Can. J. Chem.* 2001, 79, 519.
- [18] V. V. Krivykh, I. L. Eremenko, D. Veghini, I. A. Petrunenko, D. L. Pountney, D. Unseld, H. Berke, J. Organomet. Chem. 1996, 511, 111.
- [19] V. V. Krivykh, H. Berke, Abstr. Pap.- Am. Chem. Soc. 1997, 213, 103.
- [20] S. Kheradmandan, K. Heinze, H. W. Schmalle, H. Berke, Angew. Chem. Int. Ed. 1999, 38, 2270.
- [21] F. J. Fernandez, M. Alfonso, H. W. Schmalle, H. Berke, Organometallics 2001, 20, 3122.
- [22] F. J. Fernandez, O. Blacque, M. Alfonso, H. Berke, Chem. Commun. 2001, 1266.
- [23] F. J. Fernandez, K. Venkatesan, O. Blacque, M. Alfonso, H. W. Schmalle, H. Berke, *Chem. Eur. J.* 2003, 9, 6192.
- [24] D. Unseld, V. V. Krivykh, K. Heinze, F. Wild, G. Artus, H. Schmalle, H. Berke, *Organometallics* 1999, 18, 1525.

- [25] M. R. Terry, C. Kelley, N. Lugan, G. L. Geoffroy, B. S. Haggerty, A. L. Rheingold, Organometallics 1993, 12, 3607.
- [26] N. E. Kolobova, O. S. Zhvanko, L. L. Ivanov, A. S. Batsanov, Y. T. Struchkov, J. Organomet. Chem. 1986, 302, 235.
- [27] H. Werner, P. Bachmann, M. Laubender, O. Gevert, Eur. J. Inorg. Chem. 1998, 1217.
- [28] R. D. Adams, A. Davison, J. P. Selegue, J. Am. Chem. Soc. **1979**, 101, 7232.
- [29] C. P. Casey, T. L. Dzwiniel, S. Kraft, M. A. Kozee, D. R. Powell, Inorg. Chim. Acta 2003, 345, 320.
- [30] Y. Ortin, A. Sournia-Saquet, N. Lugan, R. Mathieu, Chem. Commun. 2003, 1060.
- [31] A. Davison J. P. Selegue, J. Am. Chem. Soc. 1978, 100, 7763.
- [32] P. N. Nickias, J. P. Selegue, B. A. Young, Organometallics 1988, 7, 2248.
- [33] T. Rappert, O. Nurnberg, H. Werner, Organometallics 1993, 12, 1359.
- [34] H. Werner, J. Organomet. Chem. 1994, 475, 45.
- [35] H. Werner, Chem. Commun. 1997, 903.
- [36] V. Cadierno, M. P. Gamasa, J. Gimeno, Eur. J. Inorg. Chem. 2001, 571.

- [37] P. L. Pauson J. A. Segal, J. Chem. Soc., Dalton Trans. 1975,
- [38] K. Venkatesan, F. J. Fernandez, O. Blacque, T. Fox, M. Alfonso, H. W. Schmalle, H. Berke, Chem. Commun. 2003, 2006.
- [39] K. Venkatesan, O. Blacque, T. Fox, M. Alfonso, H. W. Schmalle, H. Berke, Organometallics 2004, 23, 1183.
- [40] S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, Synthesis 1980, 627.
- [41] W. B. Austin, N. Bilow, W. J. Kelleghan, K. S. Y. Lau, J. Org. Chem. 1981, 46, 2280.
- [42] R. Nast, H. Grouhi, J. Organomet. Chem. 1979, 182, 197.
- [43] STOE-IPDS Software package, version 2.87 5/1998, STOE & Cie, GmbH, Darmstadt, Germany, 1998.
- [44] P. Coppens, L. Leiserow, D. Rabinovi, Acta Crystallogr. 1965, 18, 1035.
- [45] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
- [46] G. M. Sheldrick, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- [47] A. L. Spek, Acta Crystallogr., Sect. A 1990, 46, 34.
- [48] R. J. Burt, J. Chatt, W. Hussain, G. J. Leigh, J. Organomet. Chem. 1979, 182, 203.

Received: August 9, 2004

909